Closing next wed:

HW_2A,2B,2C

Office Hours: 1:30-3:00pm in Com.B-006

Quick review:

Def'n: The "signed" area between f(x)and the x-axis from x = a to x = b is the *definite integral*:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x,$$

where $\Delta x = \frac{b-a}{a}$ and $x_i = a + i\Delta x$

FTOC(1): Areas are antiderivatives!

$$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$$

FTOC(2): If F(x) is any antideriv. of f(x),

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Entry Task: Evaluate

the Hours: 1:30-3:00pm in Com.B-006

$$k \text{ review:}$$
 $n: \text{The "signed" area between } f(x)$
 $the x$ -axis from $x = a$ to $x = b$ is

 $the x$ -axis from $the x$ -axis from

$$\int_{3}^{6} \frac{4}{x} - \frac{2}{x^{2}} dx = \int_{3}^{6} 4 \frac{1}{x} - 2 \frac{1}{x} dx$$

$$= \frac{4 \ln |x|}{x^{2}} - \frac{2}{x^{2}} + \frac{1}{x^{2}} \frac{1}{x^{2}}$$

$$= \frac{4 \ln (x)}{x^{2}} + \frac{2}{x^{2}} \frac{1}{x^{2}}$$

$$= \frac{4 \ln (x)}{x^{2}} + \frac{1}{x^{2}} \frac{1}{x^{2}}$$

$$= \frac{4 \ln (x)}{x^{2}} - \frac{1}{x^{2}} \frac{1}{x^{2}}$$

$$= \frac{4 \ln (x)}{x^{2}} - \frac{1}{x^{2}} \frac{1}{x^{2}}$$

$$= \frac{4 \ln (x)}{x^{2}} - \frac{1}{x^{2}} \frac{1}{x^{2}}$$

5.4 The Indefinite Integral and Net/Total Change

Def'n: The **indefinite integral** of f(x) is defined to be the general antiderivative of f(x). And we write

$$\int f(x)dx = F(x) + C,$$

where F(x) is any antiderivative of f(x).

$$\sum_{x=1}^{\infty} (x^{3}) dx = \frac{1}{4} x^{4} + C = a \text{ function}$$

$$\int_{0}^{\infty} (x^{3}) dx = \frac{1}{4} x^{4} = \frac{1}{4} = a \text{ number}$$

A brief pause to discuss current integration methods. We can currently find antiderivatives for sums and constant multiples of functions <u>directly</u> from our integration table.

1.
$$\int 6e^{x} + 4x - 5\sqrt{x} \, dx$$

$$= 6(e^{x}) + 4(\frac{1}{2}x^{2}) - 5(\frac{1}{3}x^{2}) + 6(e^{x} + 2x^{2} - \frac{1}{3}x^{2} + \frac{1}{3}x^$$

$$2. \int 6\sec^2(x) - \frac{9}{x^4} dx$$

$$\int 6\sec^2(x) - 9 \times \frac{9}{x^4} dx$$

$$=6(tan(x))-7(tax^2)+c$$

4.9: LIST OF GENERAL ANTIDERIVATIVES

FUNCTION

ANTIDERIVATIVE = 1/1/11/11/

$$f(x) = x^n \ (n \neq -1)$$
 $F(x) = \frac{1}{n+1}x^{n+1} + C$

$$f(x) = x^{-1} = \frac{1}{x} \qquad F(x) = \ln|x| + C$$

$$\underbrace{f(x) = e^x}_{F(x) = a^x} \qquad e^{-2.718 \cdot x^{1/2}}_{F(x) = \frac{1}{\ln(x)}} \qquad \underbrace{F(x) = e^x + C}_{F(x) = \frac{1}{\ln(x)}} \qquad e^{-2x \cdot \ln/x}_{Ax}$$

$$\underbrace{f(x) = e^x}_{F(x) = a^x} \qquad F(x) = \sin(x) + C$$

$$f(x) = \sec^2(x) \qquad F(x) = \tan(x) + C$$

$$f(x) \in \sec(x) \tan(x) \qquad F(x) = \sec(x) + C$$

$$f(x) = \sin(x) \qquad F(x) = -\cos(x) + C$$

$$f(x) = \csc^{2}(x) \underbrace{\cot(x)}_{Cox(x)} \qquad F(x) = -\cot(x) + C$$

$$f(x) = \csc(x) \cot(x) \qquad F(x) = -\csc(x) + C$$

$$f(x) = \frac{1}{1+x^2}$$
 $F(x) = \tan^{-1}(x) + C$

$$\beta$$
 f(x) = a^{x} F(x) = $\frac{1}{\ln(a)}$ a^{x} + C

Examples we **cannot** currently do (but will be able to do later in the term):

$$\int xe^{3x}dx; \qquad \int \tan(x)dx$$

$$\int x\sin(x^2) dx; \qquad \int \frac{x^2 - x + 6}{x^3 + 3x} dx$$

$$\int \frac{3}{x - 2\sqrt{x}} dx; \qquad \int \frac{\sqrt{x^2 - 1}}{x^2} dx$$

Examples we will "never" be able to do:

$$\int e^{x^2} dx; \int \sec(x^2) dx$$

$$= \sqrt{2 \times 4 - 3} \times 4 = \sqrt{2}$$

Here are two that look bad but we can currently do them, why?

$$1.\int \frac{\sqrt{x}-3x}{x} dx = \int \frac{1}{x} \left(\sqrt{x} - 7x \right) dx$$

$$2. \int \frac{\cos(x)}{1 - \cos^2(x)} dx$$

$$\frac{2}{S(x)} \int \frac{\cos(x)}{\sin(x)} dx$$

$$= \int \frac{\cos(x)}{\sin(x)} \sin(x)$$

$$= \int \cot(x) \cos(x) dx$$

$$= \int \cot(x) \cos(x) dx$$

What is the value of:

$$\int_{\pi/4}^{\pi/2} \frac{\cos(x)}{1 - \cos^2(x)} dx$$

$$= -\csc(x) \int_{\pi/4}^{\pi/4}$$

$$= \left[-\csc(x)\right] - \left[-\csc(x)\right]$$

$$= \int_{\pi/4}^{\pi/4} \cos(x) dx$$

Net Change and Total Change

Assume an object is moving along a straight line (up/down or left/right).

Let

$$s(t) = \text{'location at time } t'$$

$$v(t) = \text{'velocity at time t'}$$

pos. v(t) means moving up/right

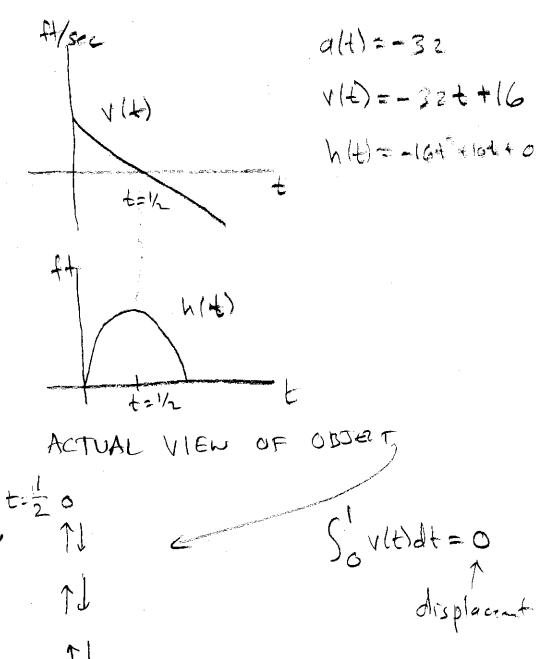
neg. v(t) means moving down/left

The FTOC (part 2) says

$$\int_{a}^{b} v(t)dt = s(b) - s(a)$$

i.e.

'integral of velocity'= 'net change in dist' We also call this the displacement.



Thus, in general, the FTOC(2) says the **net change** in f(x) from x = a to x = b is the integral of its **rate**. That is:

$$\int_{a}^{b} f'(t)dt = f(b) - f(a)$$

$$\int_{a}^{a} \int_{br}^{1} f(t)dt = f(b) - f(a)$$
Change in gallon
$$\int_{br}^{eodc} f'(t)dt = f(b) - f(a)$$
Change in gallon
$$\int_{br}^{eodc} f'(t)dt = f(b) - f(a)$$
Change in gallon
$$\int_{br}^{eodc} f'(t)dt = f(b) - f(a)$$
Change in people
$$\int_{br}^{eodc} f'(t)dt = f(b) - f(a)$$

$$\int_{br}^{eodc} f'(t)dt = f(b) - f(a)$$
Change in gallon
$$\int_{br}^{eodc} f'(t)dt = f(b) - f(a)$$

We define **total change** in dist. by

$$\int_{a}^{b} |v(t)| dt$$

which we compute by

- 1. Solving v(t) = 0 for t.
- 2. Splitting up the integral at these t values, dropping the absolute value and integrating separately.
- 3. Adding together as positive numbers.

Example: $v(t) = t^2 - 2t - 8$ ft/sec Compute the total distance traveled from t = 1 to t = 6.

$$\int_{1}^{6} |t^{2}-2t-8| dt$$

$$(t-4)(t+2)=0$$

$$t=4$$
and $t=-2$

$$\square S^{+}_{t^{2}-2t-8dt} = -18 + 4$$

$$S^{+}_{4}t^{2}-2t-8dt} = \frac{44}{3}=14.6 + 4$$

separately.

(I)
$$\int_{1}^{4} t^{2} - 2t - 8dt = -18$$
 ft

ositive

(I) $\int_{4}^{4} t^{2} - 2t - 8dt = -18$ ft

The object goes 'left'' 18 feet

then 'Cant' 14.6 feet

For Dotal DISTANCE = 18 +14.6 = 32.6 ft